换肤

星环科技

i问董秘
企业号

688031

主营介绍

  • 主营业务:

    数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期提供基础软件及服务。

  • 产品类型:

    软件产品与技术服务、软件产品授权、软件产品授权及配套服务、技术服务、应用与解决方案、软硬一体产品及服务

  • 产品名称:

    软件产品与技术服务 、 软件产品授权 、 软件产品授权及配套服务 、 技术服务 、 应用与解决方案 、 软硬一体产品及服务

  • 经营范围:

    许可项目:货物进出口;技术进出口。(依法须经批准的项目,经相关部门批准后方可开展经营活动,具体经营项目以相关部门批准文件或许可证件为准)一般项目:计算机信息科技、计算机网络科技专业领域内的技术开发、技术咨询、技术服务;计算机软硬件及辅助设备零售;软件开发;计算机系统服务;网络技术服务。(除依法须经批准的项目外,凭营业执照依法自主开展经营活动)

运营业务数据

最新公告日期:2025-08-29 
业务名称 2025-06-30 2024-12-31 2024-06-30 2023-12-31 2023-06-30
专利数量:授权专利(个) 50.00 96.00 57.00 105.00 -
专利数量:授权专利:其他(个) 5.00 25.00 19.00 28.00 -
专利数量:授权专利:发明专利(个) 12.00 45.00 27.00 21.00 -
专利数量:授权专利:外观设计专利(个) 0.00 0.00 0.00 0.00 -
专利数量:授权专利:实用新型专利(个) 0.00 0.00 0.00 0.00 -
专利数量:授权专利:软件著作权(个) 33.00 26.00 11.00 56.00 -
专利数量:申请专利(个) 56.00 127.00 52.00 142.00 -
专利数量:申请专利:其他(个) 13.00 32.00 23.00 46.00 -
专利数量:申请专利:发明专利(个) 13.00 54.00 14.00 38.00 -
专利数量:申请专利:外观设计专利(个) 0.00 0.00 0.00 0.00 -
专利数量:申请专利:实用新型专利(个) 0.00 0.00 0.00 0.00 -
专利数量:申请专利:软件著作权(个) 30.00 41.00 15.00 58.00 -
营业收入(元) - - - - 1.38亿
营业收入:其他业务(元) - - - - 252.52万
营业收入:大数据基础软件业务(元) - - - - 9979.85万
营业收入:大数据基础软件业务:基础软件业务(元) - - - - 6846.25万
营业收入:大数据基础软件业务:基础软件业务:分布式关系型数据库(元) - - - - 1016.37万
营业收入:大数据基础软件业务:基础软件业务:大数据与云基础平台(元) - - - - 3299.08万
营业收入:大数据基础软件业务:基础软件业务:数据开发与智能分析工具(元) - - - - 2530.80万
营业收入:大数据基础软件业务:技术服务(元) - - - - 3133.60万
营业收入:应用与解决方案(元) - - - - 3551.89万
营业收入:应用与解决方案:业务应用(元) - - - - 445.59万
营业收入:应用与解决方案:数据应用(元) - - - - 3106.30万

主营构成分析

报告期
报告期

加载中...

营业收入 X

单位(%) 单位(万元)
业务名称 营业收入(元) 收入比例 营业成本(元) 成本比例 主营利润(元) 利润比例 毛利率
加载中...
注:通常在中报、年报时披露 

主要客户及供应商

您对此栏目的评价: 有用 没用 提建议
前5大客户:共销售了5320.56万元,占营业收入的14.32%
  • 客户1
  • 客户2
  • 客户3
  • 客户4
  • 客户5
  • 其他
客户名称 销售额(元) 占比
客户1
1186.46万 3.19%
客户2
1163.18万 3.13%
客户3
1034.99万 2.79%
客户4
999.49万 2.69%
客户5
936.44万 2.52%
前5大供应商:共采购了2710.53万元,占总采购额的39.06%
  • 供应商1
  • 供应商2
  • 供应商3
  • 供应商4
  • 供应商5
  • 其他
供应商名称 采购额(元) 占比
供应商1
1010.93万 14.57%
供应商2
563.80万 8.13%
供应商3
548.99万 7.91%
供应商4
297.25万 4.28%
供应商5
289.56万 4.17%
前5大客户:共销售了8068.71万元,占营业收入的16.44%
  • 客户1
  • 客户2
  • 客户3
  • 客户4
  • 客户5
  • 其他
客户名称 销售额(元) 占比
客户1
2316.79万 4.72%
客户2
1943.22万 3.96%
客户3
1489.27万 3.03%
客户4
1191.44万 2.43%
客户5
1127.99万 2.30%
前5大供应商:共采购了4020.89万元,占总采购额的43.18%
  • 供应商1
  • 供应商2
  • 供应商3
  • 供应商4
  • 供应商5
  • 其他
供应商名称 采购额(元) 占比
供应商1
2169.81万 23.30%
供应商2
587.56万 6.31%
供应商3
499.31万 5.36%
供应商4
402.09万 4.32%
供应商5
362.12万 3.89%
前5大客户:共销售了5821.48万元,占营业收入的15.62%
  • 客户1
  • 客户2
  • 客户3
  • 客户4
  • 客户5
  • 其他
客户名称 销售额(元) 占比
客户1
1395.94万 3.75%
客户2
1273.75万 3.42%
客户3
1252.35万 3.36%
客户4
1010.75万 2.71%
客户5
888.69万 2.38%
前5大供应商:共采购了2365.56万元,占总采购额的44.15%
  • 供应商1
  • 供应商2
  • 供应商3
  • 供应商4
  • 供应商5
  • 其他
供应商名称 采购额(元) 占比
供应商1
598.24万 11.16%
供应商2
588.80万 10.99%
供应商3
485.98万 9.07%
供应商4
351.26万 6.56%
供应商5
341.28万 6.37%
前5大客户:共销售了6720.63万元,占营业收入的20.31%
  • 中国电子科技集团有限公司
  • 天津兰摩云创数据互联科技有限公司
  • 中国南方电网系公司
  • 云赛智联股份有限公司
  • 浙江农村商业联合银行股份有限公司
  • 其他
客户名称 销售额(元) 占比
中国电子科技集团有限公司
2079.79万 6.29%
天津兰摩云创数据互联科技有限公司
1313.11万 3.97%
中国南方电网系公司
1172.71万 3.54%
云赛智联股份有限公司
1146.43万 3.46%
浙江农村商业联合银行股份有限公司
1008.59万 3.05%
前5大供应商:共采购了2666.28万元,占总采购额的48.89%
  • 昆山华信软件技术有限公司
  • 上海泓笛数据科技有限公司
  • 上海艾艺信息技术有限公司
  • 上海数亮信息科技有限公司
  • 深圳市天地网通信息技术有限公司
  • 其他
供应商名称 采购额(元) 占比
昆山华信软件技术有限公司
954.30万 17.50%
上海泓笛数据科技有限公司
611.95万 11.22%
上海艾艺信息技术有限公司
480.56万 8.81%
上海数亮信息科技有限公司
369.58万 6.78%
深圳市天地网通信息技术有限公司
249.89万 4.58%
前5大客户:共销售了4199.57万元,占营业收入的16.16%
  • 中国南方电网系公司
  • 中国信息通信科技集团有限公司
  • 万达信息股份有限公司
  • 浙江农村商业联合银行股份有限公司
  • 国家邮政局邮政业安全中心
  • 其他
客户名称 销售额(元) 占比
中国南方电网系公司
1148.58万 4.42%
中国信息通信科技集团有限公司
1016.13万 3.91%
万达信息股份有限公司
692.92万 2.67%
浙江农村商业联合银行股份有限公司
683.98万 2.63%
国家邮政局邮政业安全中心
657.96万 2.53%
前5大供应商:共采购了3009.72万元,占总采购额的60.58%
  • 昆山华信软件技术有限公司
  • 上海数亮信息科技有限公司
  • 上海艾艺信息技术有限公司
  • 上海泓笛数据科技有限公司
  • 上海浙大网新易得科技发展有限公司
  • 其他
供应商名称 采购额(元) 占比
昆山华信软件技术有限公司
1374.24万 27.66%
上海数亮信息科技有限公司
567.33万 11.42%
上海艾艺信息技术有限公司
437.68万 8.81%
上海泓笛数据科技有限公司
322.33万 6.49%
上海浙大网新易得科技发展有限公司
308.14万 6.20%

董事会经营评述

  一、报告期内公司所属行业及主营业务情况说明
  (一)主要业务、主要产品或服务情况
  公司是一家企业级AI和大数据基础设施软件开发商,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期,以及从数据到知识、模型到应用的端到端全流程,提供全栈式基础软件及服务。公司已构建大数据与云基础平台、分布式数据库、数据开发工具、人工智能平台等软件产品矩阵,助力企业高效构建AI基础设施,全面赋能各行业客户实现数智化转型和业务创新。
  公司主要提供两大类的产品和服务:第一类是AI和大数据基础设施软件业务,包含基础软件产品和与产品相关的技术服务;第二类是解决方案业务,针对一些人工智能和大数据... 查看全部▼

  一、报告期内公司所属行业及主营业务情况说明
  (一)主要业务、主要产品或服务情况
  公司是一家企业级AI和大数据基础设施软件开发商,围绕数据的集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期,以及从数据到知识、模型到应用的端到端全流程,提供全栈式基础软件及服务。公司已构建大数据与云基础平台、分布式数据库、数据开发工具、人工智能平台等软件产品矩阵,助力企业高效构建AI基础设施,全面赋能各行业客户实现数智化转型和业务创新。
  公司主要提供两大类的产品和服务:第一类是AI和大数据基础设施软件业务,包含基础软件产品和与产品相关的技术服务;第二类是解决方案业务,针对一些人工智能和大数据特定应用场景,提供数据平台(例如数据湖仓、湖仓一体架构及云原生平台)以及业务分析和智能解决方案(例如风险预警、智能决策支持等);除上述两类业务以外,公司根据客户及项目需求销售少量第三方软件、硬件等其他业务。
  公司的第一类AI基础设施软件业务中所包含的基础软件产品,主要由下列产品矩阵所构成:
  (1)大数据基础平台软件(TDH)
  TDH是公司自主研发的一站式大数据基础平台,包括多个大数据存储与分析产品,能够存储PB级别的海量数据,可以处理包括关系表、文本、时空地理、图数据、文档、时序、图像、向量等在内的多种数据格式,提供高性能的查询搜索、实时分析、统计分析、预测性分析等数据分析功能。
  (2)云基础平台软件(TDC)
  TDC是一款基于容器技术的数据云平台,支持将大数据基础平台、分布式关系型数据库、智能分析工具等大数据软件以PaaS云服务的方式提供给客户,满足客户对数据平台的多租户、弹性可扩展和使用灵活性的要求,可以在一个云平台上支撑大量的用户需求和数字化应用,适用于建设大型企业的数字化基础设施、城市大数据中心的数据平台、企业级数据应用云以及跨多数据中心的数据平台等场景。
  (3)分布式关系型数据库软件(ArgoDB和KunDB)
  ArgoDB是面向数据分析型业务场景的分布式闪存数据库产品,主要用于构建离线数据仓库、实时数据仓库、数据集市等数据分析系统。
  KunDB是一款兼容Oracle和MySQL的分布式交易型数据库,集中式与分布式一体化,可快速由集中式扩展为分布式,主要用于支持操作型业务场景(如ERP、OA、HIS等)和高并发场景(如消费者的手机APP应用、居民码查询等)的核心数据系统的构建。
  (4)数据开发工具(TDS)
  TDS是公司研发的一款用于大数据开发的工具集。TDS内置多个数据工具产品,为企业构建数据仓库、数据湖、数据中台,提供高效的数据集成、数据治理、数据资产管理、数据标签与服务、数据共享与交易等工具,提高开发者对数据系统的建设效率,提升业务客户对数据资产的利用效率,帮助客户实现数据对业务的赋能。
  (5)人工智能平台(Sophon)
  Sophon是一款一站式人工智能平台,它能够在统一的平台上,端到端对多种模态数据完成(i)数据(含语料数据、知识数据)的接入、清洗、生成、标注、评估、存算、推理和辅助决策;(ii)模型(含传统机器学习模型、深度学习模型、大模型等)的训练、构建、组装、测试、管理和持续迭代;(iii)智能体和应用的搭建、优化和运营;到(iv)数据要素流通的各个过程。同时,Sophon也能为不同的智能数据分析业务提供便捷的存、算资源管理和调度、监控、安全、审计等企业级功能。Sophon内置了多类机器学习算法,并支持多种主流机器学习计算框架、算法和人工智能模型在Sophon平台运行,能够赋能用户更高效地进行大模型和智能体的开发和应用、大规模复杂数据分析和预测性分析,从而敏捷化加速和辅助业务决策,提高企业的数字化运营能力和智能化决策能力。
  (6)知识平台(TKH)
  TKH是公司自主研发的企业级语义智能和知识工程平台,旨在将结构化、半结构化和非结构化的企业数据转化为智能、可查询的知识资产。TKH可构建及管理企业知识图谱,并集成向量检索、图计算和自然语言理解等能力,支持RAG(检索增强生成)流程和大语言模型集成,用户可构建领域专属的问答系统。TKH核心价值是对于非结构化、半结构化和结构化的数据进行统一的存储、处理和管理,并可以赋能用户用自然语言直接进行数据分析。
  主要经营模式
  1、盈利模式
  公司主要销售AI和大数据基础设施软件业务相关的软件产品和技术服务,以及为客户提供解决方案。其中,AI和大数据基础设施软件业务是公司的主要盈利来源。根据不同客户或项目需求,公司AI和大数据基础设施软件业务主要以软件产品授权的方式交付,少量情况下也提供软硬一体交付方式,此外,根据部分项目具体需求,公司为基础软件产品或相关的软硬一体产品配套提供相关的技术服务。报告期内,公司主要通过永久授权模式向客户销售软件产品,授权收入根据客户及具体项目需求,按照授权数量收取软件授权费。技术服务及解决方案按项目计价模式或人月计价模式收费,其中维保类服务通常按服务期限收费。公司持续进行新客户的开发、销售,并随着公司客户积累及客户大数据相关信息系统建设需求,向老客户提供已购产品扩容、新软件产品销售、提供技术服务、维保及解决方案的方式,实现老客户对公司产品或服务的复购。
  2、研发模式
  公司秉承“自主研发、领先一代”的技术发展策略,由公司总经理作为公司研发工作总负责人,负责技术和产品研发的统筹安排,技术和产品研发的具体工作由产品研发部门落实完成。为保证研发质量,推动技术创新,公司针对技术研发过程制定了详细的流程管理制度,主要通过产品研发生命周期管理和软件工程过程管理两大类流程,控制开发各环节的工作质量,提高开发作业能力和研发工作效率,保证产品和技术的先进性。
  3、销售模式
  根据客户类型不同,公司销售模式分为直接销售和渠道销售两种模式。其中:
  (1)直接销售模式指公司直接面向终端用户进行签约,并向终端用户直接交付公司产品与服务的销售模式。在直接销售模式下,公司销售团队主要负责新客户的拓展以及存量客户的需求挖掘。公司总部及各地的子公司、分公司等本地化机构具备良好的销售及综合服务能力;
  (2)渠道销售模式指公司与项目合作伙伴和经销商等生态合作伙伴直接签约,通过与生态合作伙伴合作向终端用户交付公司产品与服务的销售模式。其中,项目合作伙伴主要包括直接面对中大型终端用户的系统集成商或应用开发商,拥有丰富的行业服务经验和(或)自有的IT产品,能够与公司协作形成具有实际应用价值的产品或解决方案。项目合作伙伴通常根据终端用户的需求采购公司的产品,并结合其自有IT产品或其他厂商产品(如有)销售交付给终端用户。经销商为行业内具有丰富软件推广经验的合作伙伴,与公司签署有效的合作伙伴协议或框架协议,并在合作伙伴协议或框架协议中约定了销售业绩或市场占有率或产品数量等指标。公司与经销商客户之间均为买断式销售,经销商客户在采购公司产品后,向终端用户、系统集成商或应用开发商进行销售。
  4、采购模式
  公司采购内容分为自用采购及项目采购,其中:
  (1)自用采购主要为公司日常经营和研发过程中所需的服务器、办公设备等相关硬件和少量技术服务以及办公用品,由采购部门根据内部需求执行采购流程;
  (2)项目采购通常包括技术服务采购和软硬件采购,用于向客户实施及交付。
  为了提升项目收益率、提高交付效率以及缩短实施周期,公司会向技术服务供应商采购技术服务。公司技术服务采购分为工时计价和项目计价两种方式。公司采购的物料主要为软硬件一体机的硬件设备及通用工具软件。
  对于项目采购,公司建立了内部制度规范采购行为,由采购部门根据客户需求执行采购流程。公司制定了采购业务操作规范进行内外部采购流程和供应商的管理。
  (二)公司所处行业情况
  1、行业的发展阶段、基本特点、主要技术门槛
  依据国家统计局《国民经济行业分类》(GB/T4754-2017),公司所处行业属于软件和信息技术服务业(I65)。根据《战略性新兴产业分类(2018)》,公司所属行业为“新一代信息技术产业”之“新兴软件和新型信息技术服务”之“新兴软件开发”之“基础软件开发”。
  (1)行业发展阶段
  近年来随着互联网、移动互联网、物联网、5G等信息通信技术及产业的不断发展,全球及中国的数据量均爆发式增长。根据国家数据局发布的《数字中国发展报告(2024年)》,2024年,全国数据生产总量达41.06ZB,同比增长25%。数据资源总体呈现出“4V”的特点,即海量的数据规模(Volume)、多样的数据类型(Variety)、价值密度低(Value)、快速的数据流转(Velocity)。随着生成式人工智能创新,在大模型时代,半结构化/非结构化数据(如文档、音视频、图像等)的利用效率显著提升,进一步加剧了数据存储和计算的刚性需求。当前,我国高度重视人工智能产业发展。2025年7月31日,国务院常务会议审议通过《关于深入实施“人工智能+”行动的意见》,明确要求推进AI规模化商业应用,强化算力、算法、数据三大基础要素供给。AI基础设施软件是人工智能产业的关键环节,通过提供基础数据处理和AI开发赋能,广泛服务于金融、政府、能源、电信、制造等行业,助力用户实现数智化转型和业务范式创新,加速大模型及智能体/应用落地。
  AI基础设施软件可以协助企业将原始数据转化为高质量数据资产,并降低企业AI能力的开发难度。AI基础设施软件整合了数据清洗、生成、标注、存储等功能,实现了对企业内部异构数据源的统一访问与集中管理。通过提升整体数据的可用性,显著减少数据孤岛与冗余,为构建结构合理、语义一致的数据资产体系奠定基础。此外,AI基础设施软件可以提供模型设计、测试与迭代的框架,降低构建AI应用的复杂性,助力企业更高效地开发和部署人工智能。例如,AI模型开发软件可自动执行重复任务,优化数据识别、分类及管理流程,从而高效处理大规模数据集,加快AI模型训练及部署,取代独立开发AI模型的传统做法。
  数据底座构成AI基础设施软件中的关键部分。在大数据场景下,以集中式架构关系型数据库为代表的传统数据管理软件不能很好适应数据的“4V”特性,面临较多技术挑战。随着信息技术的发展,尤其是生成式AI的出现,数据处理需求的变化推动了数据管理软件技术的变革,从技术发展方向来看,数据管理软件技术依次按照“关系型、集中式”向“非关系型、分布式”并进一步向“多模型、云原生”这三个阶段进行演变。随着技术不断成熟,分布式架构将逐渐成为主流。自底向上,传统的集中式资源管理调度逐渐向基于云原生技术的分布式统一资源管理平台发展;数据管理软件技术架构也会因为计算模式的转变发生重大变革,传统的集中式数据库逐渐向分布式、多模型数据库发展;传统数据分析软件逐渐向新型的分布式数据开发和智能分析软件发展,智能分析软件需要提供机器学习和大模型的统一运营视角。
  (2)行业基本特点
  ①分布式系统成为行业技术架构主要的发展方向
  传统数据库以集中式架构为主,集中式架构由一台或多台主计算机组成中心节点,数据存储以及整个系统的业务单元都集中部署于该中心节点中,系统所有的功能均由中心节点集中处理。每个终端或客户端仅仅负责数据的录入和输出,而数据的存储与控制处理完全交由主机完成。分布式架构下,软件组件分布在不同主机上,主机之间通过网络连接进行通信和协调。
  随着海量及异构数据的数据分析需求增长,需要的计算、存储和IO等资源也在极速增加。集中式架构通过改善硬件配置来提升存储和处理能力,但单台主机可配置的资源存在上限,因此传统的集中式架构软件难以满足海量及异构数据的数据集的处理和分析需求。而为了处理TB以及PB级别以上的数据规模,分布式的架构将数据分散在网络上多个通过高速网络互联的节点上联合计算。因为数据分布在不同节点,在进行计算任务时,任务也会被切分成多个子任务,分发到多个节点上同时进行计算,能充分利用整个集群各个节点的计算资源、存储资源和IO资源,可线性提升集群的存储和处理能力。因此,分布式架构能较好地处理该类问题,这也是分布式架构相对于传统单机架构的核心优势。
  在大数据场景下,分布式系统在扩展性、容错性、经济性、灵活性、可用性和可维护性方面具有明显优势,能够较好地满足大数据分析的需求。此外,近年来,分布式技术不断发展,在提供高弹性、支持高并发的同时,支持关系型数据库中强事务性的特性,成为大数据技术的重要发展方向。
  ②多模数据库支撑多样化需求
  数据模型是决定数据库系统逻辑的重要因素,并从根本上决定以何种方式存储、组织和操作数据,包括传统的关系模型和NoSQL数据模型(文档模型、键值模型、图模型等)。大多数数据库管理系统只能支持一种或少数几种数据模型,因此企业通常只能使用多种数据库产品联合的方案来应对日益增长的异构数据模型处理需求。
  随着大数据厂商技术实力的提升,逐渐出现了能够提供多数据库模型的大数据平台技术。相比多种数据库产品的集成方案,多种数据库模型统一的大数据平台的优势包括:(1)提升场景效率。同一份数据可以分别采用多种数据模型存放,解决不同场景的处理效率问题;(2)统一分析管理。关联不同模型的数据,统一分析管理;(3)降低运维成本。无需维护多种数据库,降低运维成本;(4)降低数据持有成本。同一份数据在不同的数据模型当中不需要全量存储,不同模型只需要存储必要的数据内容即可,在查询时可以通过关联的方式获取全量信息。
  大模型的兴起伴随着大量非结构化和半结构化数据的产生,成为视频、音频、图片和文本等多模态数据处理与分析的关键应用场景。未来以多模数据库为代表的海量非结构化及半结构化数据存储及管理能力将持续发力,多模数据库会在性能优化和扩展性、数据模型集成和转换、安全性和隐私保护、智能化和自动化等方面持续发展以满足不断增长和变化的数据管理和分析需求。
  ③湖仓/实时湖仓集一体架构提升数据处理性能
  近年来数据仓库(Data Warehouse)和数据湖(Data Lake)技术在大数据平台架构的演进过程中融合形成湖仓一体(Data Lakehouse)技术架构。湖仓一体平台将数据仓库的高性能及数据管理能力和数据湖的开放性和灵活性相融合,实现了海量异构数据的统一存储、计算、开发、管理和服务,从而解决数据孤岛、数据冗余和系统维护等问题。大模型需要的存储底座需要具备高存储密度、高性能计算、数据安全保障等特点,可以支持多种数据源的接入,数据存储、处理和分析,以及数据的输出和共享。随着智能时代的到来,能够对大规模数据进行高性能处理的湖仓一体技术成为AI大模型不可或缺的数据基础设施。
  为了满足企业真正的一体化数据平台的需求,在湖仓一体架构的基础上,新的一体化架构也应运而生,称为“实时湖仓集一体架构”。该架构旨在满足多种数据处理场景,包括数据湖、数据仓库、数据集市(用于交互式数据分析)、实时数据处理(支持实时更新和查询)以及在线数据服务(满足高并发访问需求)等多种数据处理场景。新的一体化架构不仅能够作为数据基础设施满足传统数据服务需求,还能作为AI基础设施的知识管理平台,满足大模型对多模态知识的供给需求。
  ④云原生大数据平台架构成为未来的主要发展方向
  云原生的代表技术包括容器、服务网格、微服务、不可变基础设施和声明式API,这些技术能够构建容错性好、易于管理和便于观察的松耦合系统。结合可靠的自动化手段,云原生技术使工程师能够轻松地对系统作出频繁和可预测的重大变更。云原生技术有利于各组织在公有云、私有云和混合云等新型动态环境中,构建和运行可弹性扩展的应用。面对客户日益增长的海量数据、多种数据结构的实时化、智能化处理需求,云原生的大数据平台架构凭借计算存储解耦、资源池化、Serverless等核心技术,提供了高弹性拓展、海量存储、多种数据类型处理及低成本计算分析的能力。相比传统数据库,云原生数据库及数据管理平台天然具备灵活性,能够提供强大的创新能力、丰富多样的产品体系、经济高效的部署方式和按需付费的支付模式。
  ⑤AI智能体的普及
  AI智能体有望在中国AI基础设施软件市场的关键任务中得到广泛应用,例如数据标准化、治理及质量检测。这些工具正推动管理模式从“人工规则驱动”向“智能体驱动的自动化”转变。通过引入具备持续学习能力的AI智能体,企业可自动处理语料库并实现文本与语音的对齐,提升数据治理的效率与准确性。这减少了对人工数据工程的依赖,同时推动AI基础设施软件市场向更智能、更自主、更可持续的数据管理系统发展,成为企业高质量数据资产的关键支撑。
  ⑥国家加速数据要素市场建设,推动数据安全流通技术的商业化进程
  2021年12月12日,国务院发布《“十四五”数字经济发展规划》,其中强调“充分发挥数据要素作用”。随着《要素市场化配置综合改革试点总体方案》《关于加快建设全国统一大市场的意见》《关于构建数据基础制度更好发挥数据要素作用的意见》《企业数据资源相关会计处理暂行规定》等相关政策不断落地,彰显数据要素的重要性。2023年10月,国家数据局挂牌成立,打开了数字经济发展新局面。报告期内,国家也持续推出政策“组合拳”支持数据要素市场发展。2024年1月发布的《“数据要素×”三年行动计划(2024—2026年)》强调要聚焦应用场景,发挥数据要素乘数效应。2024年11月,国家数据局印发《可信数据空间发展行动计划(2024年-2028年)》;2024年12月,国家数据局联合多部门发布《关于促进企业数据资源开发利用的意见》;2024年12月,国家发改委、国家数据局等六部门印发《关于促进数据产业高质量发展的指导意见》。2024年12月,国家发改委、国家数据局、工业和信息化部发布《国家数据基础设施建设指引》,明确了2024年至2029年的发展目标,包括数据基础设施的技术路线试点、互联互通、规模化流通等。
  当前,丰富的数据要素资源已经涵盖了政府、金融、运营商、房地产、医疗、能源、交通、物流、教育以及制造业、电商平台、社交网站等众多领域。同时,由于数据的流通和利用是数据要素价值创造的前提,而跨域、跨中心的数据融合计算需求,以及数据要素在开放流通环节中的安全需求(包括“可用不可见”、“可用不可得”、“可用不出域”等),都使得数据的安全可信流通成为数据要素的市场化配置的重要一环,也是各行业数字化转型过程中和过程后的必由之路。随着《数据安全法》《个人信息保护法》《关键信息基础设施安全保护条例》的实施,以安全为前提的数据开放利用将迎来新一轮发展机遇。隐私计算是在处理、分析计算数据的过程中保持数据不透明、不泄露、无法被计算方以及其他非授权方获取的一种技术解决方案,能够在充分保护数据和隐私安全的前提下,实现数据价值的转化和释放,应用前景和商业价值巨大。在国家加速数据要素市场建设和重视数据安全和隐私保护的大背景下,数据安全防护技术、隐私计算技术的应用普及和商业化在加速进行。
  (3)行业主要技术门槛
  AI和大数据基础软件行业属于知识密集、技术先导型的新兴产业,其技术门槛较高,主要体现在技术迭代的速度以及技术覆盖面的广度,每年不断涌现出新技术成为实现大数据的集成、存储和处理、治理、建模、挖掘和流通的有效手段,需要公司具备较强的研发创新能力及保障持续的技术研发投入以准确把握技术发展趋势、引领新技术的迭代、适应新技术的要求。当前,大模型浪潮进一步加速了技术的迭代速度,且要求公司具备大模型时代的技术融合能力,缺乏底层技术积累的新进入者难以快速构建“数据+AI”双轮驱动的产品力。由于AI和大数据基础软件在不同行业客户的数字化和数智化基础设施中,提供信息系统的基础能力,是整个应用系统最终实现数字化的技术基础,其技术水平也决定了对应业务应用系统的能力边界和创造数据价值的效率,在信息系统中处于核心环节,因而企业的研发创新能力也成为未来竞争的关键要素,只有研发能力过硬的企业才能够通过更突出的技术优势树立产品竞争力,而新进入者缺乏对大数据和AI核心技术的有效积累,面临较高的技术门槛。
  2、公司所处的行业地位分析及其变化情况
  (1)技术地位
  大数据基础软件是新兴科技领域,公司是国内较早专注于大数据和AI基础软件研发的公司,自主研发的大数据基础平台、分布式分析型数据库等已达到业界先进水平。2018年3月,公司大数据基础平台产品TDH V5.1正式通过国际知名组织TPC的基准测试TPC-DS的官方审计,成为全球首次完整通过该项基准测试的数据产品。2019年8月,ArgoDBV1.2.1版本正式通过了TPC-DS基准测试的官方审计,成为全球第四个通过的数据库产品。2022年8月,公司的人工智能平台Sophon DiscoverV3.0.0成为首个通过TPCx-AI基准测试SF3,000(当前TPCx-AI已通过测试最大体量)的产品。2023年12月,公司大数据基础平台TDHV9.1通过TPCx-BB SF3,000基准测试的官方审计,目前性能位列全球第二。
  (2)市场地位
  在大数据基础平台、数据库和AI软件产品领域,公司展现出了强劲的综合实力,在市场中占据显著地位。2020年10月,IDC发布《MarketScape:中国大数据管理平台厂商评估,2020》,公司综合能力排名市场第四,是中国大数据管理平台市场的领导者。该综合能力指通过关键战略(包含增长、研发速度、生产效率等)、关键能力维度评价(服务范围、客户服务交付等)对中国大数据管理平台厂商综合能力排名。2022年6月,公司多个产品或子产品入选Gartner发布的《中国数据库管理系统供应商识别指南》,在识别的8类数据库管理系统产品中,公司入选产品覆盖其中7类,是覆盖超过7类或以上产品的四家厂商之一,以及覆盖多模数据库的四家厂商之一。公司入围IDC《中国大数据平台市场份额,2023》报告,2023年中国大数据平台私有化部署市场规模达107.1亿元,公司在中国大数据私有化部署市场份额在独立软件厂商中位列第一。此外,在IDC《中国人工智能软件市场份额,2023:大模型带来新生机》报告中,公司在中国机器学习平台市场份额排名第五,进一步彰显了公司在AI领域的竞争力。2024年,公司被IDC评为中国数字政府一体化大数据平台领导者和中国实时湖仓市场领导者。2025年,公司入选IDC中国数据空间市场主流供应商及最佳实践,在IDC《中国政务大数据平台市场份额,2024》中位列独立软件厂商市场份额第一。
  公司积极参与制定国家、行业标准组织的多份标准和规范,推动全国范围内及各行业的数字化和智能化水平稳步提升。随着GenAI的发展崛起,各行业标准和交付标准需要统一。报告期内,星环科技参与编制《大模型应用交付供应商总体能力要求》《面向智能制造的工业大模型标准化研究报告》,充分体现了公司在大模型领域的技术实力和交付精细度。
  报告期内,公司持续收获业界的认可和荣誉,在灾备联盟信创工委会“2024年度十大信创平台软件品牌”评选中,凭借全栈自研的技术实力和深度适配的生态体系,摘得国产大数据基础软件领域桂冠。公司入选信通院AI Agent智能体产业图谱(1.0)和中国人工智能产业发展联盟(AIIA)与中国信息通信研究院联合发布的《大模型应用交付供应商名录(2025年Q1)》,展示了公司在大模型技术研发、场景落地及全栈工具链建设中的突出实力。公司与复旦大学合作项目荣获2024年度“吴文俊人工智能科学技术奖”技术发明二等奖,展示了多场景大数据智能交互式分析关键技术及应用。星环众智科技(南京)有限公司入选2024年度江苏省“专精特新”中小企业名单,也展示了各地分子公司的影响力和科创实力。
  3、报告期内新技术、新产业、新业态、新模式的发展情况和未来发展趋势
  (1)模型平权驱动技术普及与应用革新
  以DeepSeek为代表的开源生态体系,允许全球开发者自由定制和创新,借助一系列创新技术大幅降低模型训练成本和技术准入门槛。模型平权使得AI模型能够更快速地在不同行业和领域中得到应用,如金融、政府、医疗、教育、交通等。各领域的专业人员可以更便捷地获取和使用先进的AI模型,并开发具备强行业或者场景属性的应用程序,推动各行业的智能化转型。此外,在模型平权的趋势下,基于模型轻量化技术突破,大模型正在向端侧(例如PC、手机、汽车、智能家居设备、智能穿戴设备等终端设备)转移,使得大模型能够在端侧设备高效运行,呈现“端云协同”新范式。端侧AI相比云侧AI具有低延时、保护数据隐私、节省云端计算资源等优势。
  与此同时,为支撑智能化转型,企业加速构建新一代AI基础设施。新一代AI基础设施整合异构算力、自动化开发平台与智能运维系统,用于支持AI模型和应用的开发、部署和管理。性能、安全性、成本和与现有系统的集成能力成为影响企业决策的几大主要考量因素。
  顺应上述产业及技术趋势,公司实施了全面的战略升级,公司的定位从数字基础设施进一步延伸至AI基础设施,打造从语料处理、模型训练、知识库建设、应用开发、智能体构建等一整套工具链,为企业高效构建AI基础设施,让大模型在企业内部快速落地。公司也积极推进端侧AI技术,公司的无涯大模型提供了灵活的部署模式,包括私有化部署(企业端、AIPC端)、公有云服务等,推动云边端三位一体的知识库建设。
  (2)数据要素进入政策深化推进阶段
  自2022年底“数据二十条”顶层文件发布,为数据基础制度的构建确立了原则和方向后,数据要素产业进入了政策密集落地期,数据治理、确权及使用原则、公共数据授权运营等领域落地推广模式逐步清晰。2023年10月,国家数据局挂牌成立,打开了数字经济发展新局面。2024年1月发布的《“数据要素×”三年行动计划(2024—2026年)》强调要聚焦应用场景,发挥数据要素乘数效应。该计划选取了十二个特定行业应用场景,并明确了到2026年底的工作目标,要打造300个以上示范性强、显示度高、带动性广的典型应用场景。2024年初至今,交通运输、金融服务、文化旅游、医疗健康等行业都陆续推出提升数据管理水平、促进数据要素价值释放的相关政策。2024年5月的第七届数字中国建设峰会上,国家数据局发布了首批20个“数据要素x”典型案例,展示了不同行业和地域在数据要素开发利用方面的成功实践。2024年12月,国家数据局联合中央网信办、工信部、公安部、国务院国资委共同印发了《关于促进企业数据资源开发利用的意见》,旨在充分挖掘和释放企业数据资源的价值,推动构建以数据为关键要素的数字经济。基于隐私计算、虚拟沙箱技术的可信数据空间可以为数据要素的流通交易提供安全和可信保障。公司的一站式数据要素流通解决方案,可为数据要素提供方和数据要素需求方提供安全隔离环境,解决供需双方和服务方主体间的安全与信任问题。公司的数据安全流通平台由数据市场、隐私计算、数据沙箱、安全网关、安全治理等软件构成。供方可在数据安全流通平台上对数据进行安全治理与加工,并完成数据资源的登记与流通发布。需方可通过API调用、SQL开发、编程式建模、可视化建模、联邦学习、多方安全计算完成数据的开发、分析、计算与建模,实现“原始数据不出域,数据可用不可见”的数据可信、可控、可追溯目标。
  (3)自主可控推动产业链安全与高质量发展
  世界百年未有之大变局下,产业链、供应链安全是能否实现高质量发展的重要前提,也决定了必须走自主可控的道路。“十四五”规划中明确强化基础组件供给,大力发展云计算、大数据、人工智能、区块链等平台软件开发框架;2024年超长期特别国债的重点聚焦投向亦包括科技创新,加快实现高水平科技自立自强。目前,国产化替代正处于从“可用”向“好用”的进化阶段,应用领域也从党政行业逐步向金融、能源、电信等其他行业拓展。公司的产品及技术发展均符合国家产业政策方向与国家科技创新战略,报告期内,ArgoDB通过国家信息安全等级保护三级测评,标志着其技术水平和安全性能达到了国家级信息安全标准,能为企业提供全方位的安全服务支撑和保障。在基础软件自主研发的同时,公司积极参与人工智能和大数据行业标准及规范的制定,并深度参与产品图谱编制、产业白皮书、案例集编撰等工作。

  二、经营情况的讨论与分析
  报告期内,DeepSeek-R1推理模型的发布,在全球人工智能领域掀起了技术革新与产业重构的巨浪。作为国内的AI基础设施软件领军企业,公司通过深度整合AI、大数据、云计算等产品和技术,为企业高效构建AI基础设施软件,全面赋能各行业进行数智化转型和业务范式创新。在数据量爆发式增长、关键技术卡脖子风险加剧、企业数智化升级刻不容缓的今天,打造自主安全可控、性能领先的国产数据与AI基础设施软件已不再是远大目标,而是国家与产业的战略刚需和企业的必然选择。我们正是为这一需求和铸就自主根基而创立的技术公司。
  报告期内,公司营业总收入实现15,250.58万元,同比增长8.82%。实现归属于上市公司股东的净利润为-14,294.51万元,较上年同期亏损缩窄25.24%。报告期内公司具体经营情况如下:
  1、主营业务收入分行业、业务及客户结构分析
  报告期内,公司主营业务收入约为15,204.50万元。
  公司的软件产品标准化程度较高,覆盖多个行业领域,形成了广泛的客户基础。报告期内,按终端用户行业分类,公司主营业务收入主要来自金融、能源、政府、交通、电信等行业。
  2、深化生态建设
  报告期内,公司不断深化和拓展与各行业ISV(独立软件开发商)的合作关系:与医疗ISV打造智慧医疗解决方案,涵盖区域医疗数字化、医院数据中心建设等多个方面,推动医疗行业数字化转型,提升医疗服务质量和效率;与轨交行业ISV打造智慧轨交解决方案,基于大数据、容器云和人工智能技术,提升轨道交通运营效率、应急辅助能力、公众服务能力等;与新能源行业的ISV打造智慧新能源解决方案,基于星环湖仓集一体的大数据基础平台和时序数据库技术,实现对新能源生产域数据的统一处理。同时,公司与央企数智化公司合作,实现对不同大模型的统一管理、集团私域知识库的统一治理、应用和智能体的统一构建,推动央企集团的数字化转型。此外,公司积极拓展海外业务,与国内大型集团企业管理信息化综合方案提供商推出企业管理联合解决方案,服务海外客户。
  3、产品和技术创新
  公司深刻认识到,数据已经成为企业构建AI竞争力的关键要素,公司致力于通过提供一系列数据和AI能力工具,赋能客户使用高级数据管理技术将数据转化为企业的数据资产,并基于数据资产微调模型和构建智能体,加速数据资产向业务成果的自动化跃迁。
  (1)AI就绪数据平台(AI-Ready Data Platform)
  公司的AI就绪数据平台,采用多模型统一的技术架构,在一个平台上支持管理11种数据模型。该数据平台以向量、文档、图、全文索引、关系型、时序等多模型数据统一存储管理为基础,提供多模态数据自动处理、高效数据治理、特定领域知识构建以及实时数据洞察能力,实现从数据产生到应用于AI的全过程数据管理,一站式助力企业更高效地运用AI释放数据价值。
  报告期内,公司的大数据基础平台TDH主要在湖仓集一体和多模型能力进行了提升。湖仓集一体是指通过一个统一的集群整合数据湖、数据仓库和数据集市,实现一表多用,支持实时数据入湖、离线批量加工、在线分析和高并发查询等多种业务场景,避免了跨集群搬迁带来的数据冗余、链路冗长和一致性风险,大幅提升数据加工效率和系统资源利用率。在此基础上,平台升级了计算引擎的增量计算能力,在不修改批量业务逻辑的基础上,可以将端到端业务时效从T+1天缩短至T+1分钟,减少了业务实时化的开发周期和开发成本;增强了查询性能和并发处理性能,支持上万QPS的在线查询;优化了基于容器的弹性计算机制,实现不同业务间的资源隔离与动态共享,提升整体资源利用效率;同时新增对国外大数据平台Cloudera Data Hub的原地升级支持,无需新增节点或数据迁移,即可实现统一资源管理与平滑切换。多模型能力侧,下述产品也实现了性能突破和功能创新:分布式向量数据库Hippo2.0,准确率突破95%,基于Arm架构的性能显著优化,同时支持跨模态的联合检索(即实现图像与文本语义对齐,在同一查询中检索相似图文内容);分布式时序数据库Timelyre9.3,能高效支撑PB级别数据量下的秒级数据分析,达到5-20倍的无损数据压缩;分布式图数据库StellarDB6.0,针对部分高并发短查询场景中大幅提升性能,同时也支持MCP协议,赋能外部应用便捷访问和检索。
  公司的数据云平台TDC5.1支持异构算力融合,对多个异构GPU集群实现统一的池化管理,并进一步升级模型调度能力,对不同尺寸的模型进行统一调度管理。
  公司的分布式数据库ArgoDB V6在交易数据库实时数据同步、湖仓集一体化和HTAP架构方面实现了多项能力升级。ArgoDB可与核心在线业务系统深度融合,支持核心交易数据库毫秒级同步数据,无需开启补全日志,显著降低对交易系统性能的影响,加速业务决策。同时,通过对接实时应用系统数据,具备实时与历史数据的联合分析能力,简化实时业务处理架构。此外,ArgoDB引入了全新的实时行列混合存储格式,满足更多元化的场景需求,无需索引即可实现一种格式满足毫秒级实时写入、高性能在线分析以及高并发查询等多种场景,使存储与计算效率综合提升一倍。ArgoDB还新增支持HTAP(混合事务和分析处理)能力,可以基于同一份数据格式支持OLTP和OLAP业务对数据的操作需求,实现实时事务与实时分析统一架构下的混合负载。
  公司的分布式交易型数据库KunDB V4适用于核心系统的国产化替代、传统数据库的分布式升级、海量数据的高并发处理以及关键业务的高可用容灾等场景。KunDB打破了以往集中式与分布式之间的壁垒,允许通过扩缩容在单分片与分布式间转换。KunDB采用一致性Paxos共识算法提供金融级别的高可用和同城双中心/异地多集群(两地三中心)的跨地域容灾能力,并在数个省和市级数据中心完成实践落地。在兼容性方面,KunDB可提供双语法模式完整支持PL/SQL,可以平滑替代Oracle/MySQL数据库,顺利完成数家金融机构落地MySQL替代。通过引入OLAP引擎,KunDB支持数据仓库、复杂统计和聚合查询。
  公司的大数据开发工具TDS可按客户实际需求组合成数据开发、数据治理、数据运营套件,满足企业用户从数据资源到数据资产运营、数据流通交易管理、实时湖仓建设等多种解决方案,可满足企业对DCMM数据管理成熟度各等级的适配要求,是辅助企业实现数字化转型的必要工具集。TDS4.1版本进一步完善了实时数据同步以及作为企业数据资产门户的能力,优化Oracle、SqlServer、Mysql、PostgreSQL等主流数据库的日志级别CDC(change data capture)同步的稳定性以及数据一致性保障能力;升级优化了数据目录,构建了包含数据资产目录、数据产品目录的多目录体系,支持多视角和多维度的综合展现能力,并对界面进行改版以开发套件、治理套件、运营套件、实时套件的形式方便用户自行组织首页门户,并结合大语言模型的能力提升数据治理工作效率,可实现自然语言问答指标形成数据分析看板,帮助业务人员自主创建并管理指标。
  (2)AI平台
  公司的AI平台主要包含大模型运营平台Sophon LLMOps和知识平台Transwarp Knowledge Hub两类产品。
  为赋能政企客户构建自己专属的大模型、智能体和应用,公司开发了大模型运营平台Sophon LLMOps,一款提供机器学习和大模型统一视角的AI运营管理平台,旨在打通并优化语料接入和开发、提示工程、大模型训练和微调、应用构建和管理、服务部署和运营等全链路流。
  Sophon LLMOps1.6主要包含语料工具、知识工程、模型训练和推理、智能体开发四个模块。
  报告期内升级情况如下:
  -语料工具模块新增了文件编目、数据资产化功能,增强了分布式的语料处理等能力,满足模型训练、微调、后训练要求,以及为企业级知识库提供完整的解析、清洗、治理能力基础;
  -知识工程模块完善了全流程知识工程构建工具:通过自动化的工艺助力企业把文档、图片等专有的非结构化或半结构化的数据转变成资产,供给大模型、智能体使用,解决知识库构建、提升、运营过程中数据量越来越大、版本越来越多、知识体系越来越细分的使用和管理需求;同时也支持了知识构建全流程的审计、管控,提升了知识库的安全性、可追溯性、可观测性;
  -模型训练和推理模块提升多种国产GPU和多种推理引擎框架的兼容支持,新增模型蒸馏功能,新增一键导入开源模型功能,提升训练和推理加速能力;
  -智能体开发模块提升了易用性并新增MCP功能,显著提升AI应用开发效率,包括支持知识库、函数工具(function call)、MCP服务的分钟级快速配置;新增数据解析和知识工程智能体,供开发者直接调用。
  为助力企业整合其拥有的多源异构多模语料,支撑专业知识库问答、业财数据分析、智能投研、设备预测性维护等场景,实现企业资料的全域知识化,同时强化企业内外部的知识共享与应用,公司推出星环知识平台Transwarp Knowledge Hub(TKH),打造企业级一站式多模态知识平台。基于公司自主研发、从0到1预训练的无涯大模型,星环知识平台TKH打造了无涯·问知、无涯·问数等AI原生应用,通过精准的数据分析和知识管理,满足企业不同类型的知识应用需求,提升企业业务效率和竞争力,其中:无涯·问知是AI的应用门户,一款基于星环科技大模型底座,结合个人知识库、企业知识库、法律法规、财经等多种知识源的企业级垂直领域问答产品。无涯·问知充分利用了公司自研的向量索引技术和图计算框架,并结合大模型底座的自动化知识工程特性,实现知识的精准召回,可用于公司数据分析、尽职调查、合同审核、财务分析、智能写作等丰富的企业业务场景中,旨在提升企业的经营管理效率。无涯·问知提供了灵活多样的部署模式,包括私有化部署(AIPC版、企业版)、公有云服务等。
  无涯·问数是一款基于星环科技数据分析大模型的智能业务分析洞察平台,能够帮助业务人员和决策者探索数据,获取准确的数据结果及生动的图表看板,缩短数据分析链路,降低数据分析门槛。无涯·问数拥有自然语言提问的全场景数据探索、仪表盘快速生成、指标标签预定义等核心功能,具备业务理解一致、指标定义明晰、数据结果统一、查询结果可解释、分析探索灵活、分析场景可见等特性。
  报告期内,大模型相关商机带动公司近3,000万元订单,主要包括大模型运营平台和AI就绪的数据平台等,客户覆盖金融、政府、能源、教育、制造等多个行业。

  三、报告期内核心竞争力分析
  (一)核心竞争力分析
  1、具备持续创新能力,致力于引领行业技术发展
  公司专注于分布式技术、数据库技术、编译技术、数据云技术、AI与机器学习运营管理技术等基础软件领域的研发,始终坚持“自主研发、领先一代”的技术发展策略,注重技术研发的前瞻性。自2015年以来,公司已在关系型分析引擎、流处理引擎、容器云技术、数据云服务、多模型数据的统一处理技术等诸多领域实现多项技术突破,引领行业技术发展。在全球大模型浪潮初兴之际,2023年5月,公司领先业界率先推出企业级分布式向量数据库Hippo以及大模型运营平台Sophon LLMOps,而国际数据与AI巨头Databricks于同年6月宣布收购MosaicML创业公司以布局模型微调和智能体构建的工具,进一步印证了公司在技术趋势把握上的前瞻性和快速布局的执行力。截至2025年6月30日,公司累计获得发明专利169项。公司基于分布式架构的大数据基础平台、分析型数据库产品等已达到业界先进水平,相关产品已通过国际知名组织TPC的基准测试TPC-DS并通过官方审计,公司也是该基准测试自2006年标准发布以后全球首个通过官方审计的软件厂商。2020年,根据IDC《MarketScape:中国大数据管理平台厂商评估,2020》,公司在关键战略、关键能力等维度评价综合能力排名市场第四,是中国大数据管理平台市场的领导者。2022年8月,公司成为全球首家通过TPCx-AI SF3,000基准测试的厂商。2023年12月,公司大数据基础平台TDH通过TPCx-BB SF3,000基准测试的官方审计,目前性能位列全球第二。
  2、核心技术自主研发,助力大数据基础软件国产化进程
  我国高度关注核心技术领域发展,相关扶持政策不断落地,国产基础软件产业整体将加速推进。大数据及相关产业是当前国家重点发展产业领域之一,公司具备自主研发的产品及众多产业标杆案例,作为国产大数据的代表企业之一,公司有望在相关领域不断实现更大突破,助力国家产业数字化升级。
  公司坚持核心技术自主研发,大数据软件产品在数据存储管理层、计算引擎层、编译器层、资源管理层实现了统一重构,在大数据核心基础软件领域实现对国外对标企业产品的替代。自成立以来,星环科技大数据基础平台自底向上研发了核心组件,逐步脱离了国外开源大数据框架的束缚。以核心产品大数据基础平台TDH为例,公司持续投入研发,并实现产品突破,截至目前,分布式SQL编译器、计算引擎、存储引擎、分布式数据管理系统、资源调度器等核心技术已实现自主研发。
  公司积极参与信息产业国产化进程,成为大数据基础软件国产化的重要推动者。2024年12月,中央国家机关政府采购中心发布“关于中央国家机关2024年度事务性数据库软件框架协议征集采购项目中标结果”,公司的KunDB入围事务型分布式数据库供应商名单。公司承担了工信部《2020年新兴平台软件项目-大数据平台软件》、工信部《面向新一代信息技术的跨区域协同大数据处理工具软件研发》、上海市《全栈型云平台产品研发及生态建设》、上海市经济和信息化委员会《全域数据隐私保护的可信数据流通平台》和《人工智能开发平台及工具》等在内的众多项目,得到项目主管单位的高度认可。此外,公司快速完成了和多个国产硬件平台的适配,还创新地支持在一个集群内允许多个不同的硬件架构(如X86架构和国产鲲鹏、飞腾、龙芯等架构)混合部署,并可以协助客户对异构算力进行高效管理和调度,能够更好地让用户实现逐步的国产化替代进程。公司已助力金融、能源、制造、交通等行业多个用户实现了数据分析场景中部分关键信息系统的国产替代,替代的对象包括传统关系型数据库Oracle、IBM DB2、Teradata;搜索引擎Elasticsearch、大数据平台Cloudera Data Platform、智能统计分析工具SAS等多家国外主流厂商产品。公司已成为国产大数据和数据库领域的重要参与者,未来,公司将持续自主研发大数据基础软件领域的关键技术,推动国家数据信息安全和其他产业的发展。随着基础软件国产化进程的加快推进,公司有望在该进程中取得有利的发展态势并取得一定的市场份额。
  3、产品线丰富且服务能力强,满足用户数据全生命周期管理的需求
  围绕数据集成、存储、治理、建模、分析、挖掘和流通等数据全生命周期管理的各个阶段,以及从数据到知识、从模型到应用的全链路流程,公司研发了一系列软件产品,包括大数据与云基础平台、分布式关系型数据库、数据开发与智能分析工具等软件产品、软硬一体机产品及相关技术服务,实现“一站式”AI基础设施软件解决方案。2022年6月,公司多个产品或子产品入选Gartner发布的《中国数据库管理系统供应商识别指南》,在识别的8类数据库管理系统产品中,公司入选产品覆盖其中7类,是覆盖7类或以上产品的四家厂商之一,以及覆盖多模数据库的四家厂商之一。相较市场上提供单一模块或局部方案的供应商,公司丰富的产品线使我们能够根据客户需求灵活定制解决方案,全方位满足客户需求,挖掘客户全生命周期价值;同时,全栈产品矩阵所采用的统一架构能够大幅降低软硬件投入和运维复杂度,确保全链路兼容,实现降本增效。由于AI基础设施软件专业性较强且对于整个信息系统的重要性较高,因此较多用户除了采购公司软件外,亦需要公司提供配套的技术服务支持。公司具备较强的技术服务能力,2020年,公司获得中国信息通信研究院“大数据服务能力评估-数据工程专项-量化管理级(四级)”和“数据库服务能力评估-实施部署专项-量化管理级(四级)”,是当年参与测评厂商中的最高评级。2021
  年,公司再获“大数据服务能力评估-大数据平台建设服务能力专项-量化管理级(四级)”,表明公司在大数据服务能力方面已具备较高的成熟度。公司也为用户提供解决方案服务,包括大数据开发、治理、分析、建模等相关的咨询、定制开发等服务,赋能客户和合作伙伴快速构建数据
  仓库、数据湖、数据云、智能体和应用等多个核心场景,实现数据全生命周期管理的整体解决方案。
  公司拥有完整的产品布局及优质的技术服务能力,可以提供全面的数据处理平台和工具,满足企业用户对于大数据处理和应用的全方位需求,为公司带来了交叉销售的机会。
  4、客户粘性强,老客户复购收入为公司营业收入的重要来源
  AI和大数据基础软件作为信息系统的重要基础设施,对上层应用系统的稳定性、可扩展性等方面有重要影响,由于基础软件替换成本较高,已有客户未来往往不会轻易替换已采购的产品。数据处理量的提升与大数据应用业务场景的增加,将产生产品的扩容或选购新类型产品的需求,从而为公司持续获得客户订单,实现业务稳定发展提供了支持。
  随着大数据和AI技术的普及,以及公司产品的不断研发推广,终端用户群体保持快速增长。截至报告期末,公司拥有逾1,600家终端用户。公司作为大数据基础软件产品提供商,产品化程度较高,不局限于某单一行业,可以快速在不同行业实现广泛布局。公司自主研发的先进技术和大数据全周期解决方案能成功满足各类客户多个业务场景的需求,得到了众多客户的认可。公司客户分布在金融、政府、能源、交通、制造等众多国民经济支柱领域,具备长期稳定的潜在需求。
  在收入规模持续扩大的同时,公司重视对于老客户的维护。2024年,公司老客户复购产生的收入约占公司主营业务收入的78.83%,构成公司主要的收入来源。在大数据和AI应用场景不断增加与公司客户基数不断增长的背景下,公司将继续深化对老客户的运营,为其提供优质的产品与服务,挖掘老客户的收入增长空间。
  5、打造生态闭环,推动业务长期健康发展
  公司自成立以来,围绕自研的大数据和AI基础平台,公司发展了包含系统集成商、独立软件开发商、软件开发工程师、高等院校等一系列活跃参与者的“生态”闭环。公司的生态系统包含数百家项目合作伙伴,且我们在持续拓展新的合作关系。例如,我们与各类CPU、GPU、操作系统、整机和硬件厂商进行产品适配和性能优化,包括众多国内领先的技术企业,以共同促进核心技术领域国产化进程。我们通过技术对接、产品适配、商务政策沟通等步骤,获得独立软件开发商等合作伙伴认可,并推动产品在各行业的销售。同时,我们建立了成熟的人才生态体系。一方面,我们帮助合作伙伴和客户理解新技术及实现产品应用落地,提升客户数智化运营与决策的效率。另一方面,我们推动产品及其最佳实践的培训与推广,降低平台使用学习门槛,让没有大数据和AI从业经验的软件工程师与业务人员,经过培训后,能快速上手并投入到产业技术的开发及使用中。
  此外,公司亦积极推动产学研,与高校及研究机构合作,打造良性的创新生态圈。公司已与北京大学、南京大学、复旦大学、上海大学、新加坡理工学院、英特尔等联合共建大数据/人工智能实验室、技术创新实验室,并和清华大学、东南大学、天津大学、华东师范大学等开展企业参观和技术交流活动,通过与高等院校和企业合作扩大产品的影响力并扩充使用者群体规模。通过与业内顶尖科学家定期交流,我们能够与最新的大数据和AI技术发展保持同步,保持在核心技术领域的领导地位。
  多年的生态系统建设为我们培养了优质的开发者及合作伙伴,提升品牌影响力,助力我国人工智能和大数据行业生态建设,也有利于推动我们的业务长远健康发展。
  6、具有技术深厚的核心团队,建立了较高的人才壁垒
  公司核心团队深耕大数据和AI基础软件领域十多年,是国内最早从事大数据和AI基础设施软件技术的研发和产品化的团队之一,为公司奠定坚实的研发实力基础。核心团队将其在业内优秀企业积累的技术经验和管理经验应用于公司实践,并通过传帮带培养了一批专业而精干的中层技术团队,有效提升了企业的技术水平和规范化运作水平,形成了持续技术创新、对客户快速响应和高品质交付的能力。
  公司建立了完善的“选用育留”人才管理体系,重视员工的能力建设和职业发展,促进员工与企业同创共赢,为业务发展输送优秀人才。优秀的核心团队以及完善的长期人才培养和激励机制为公司建立了较高的人才壁垒。
  (二)报告期内发生的导致公司核心竞争力受到严重影响的事件、影响分析及应对措施
  (三)核心技术与研发进展
  1、核心技术及其先进性以及报告期内的变化情况
  公司以技术研发为核心,推动业务持续发展。自成立以来,公司深耕于数据基础软件领域,形成突出的科技创新实力,在分布式技术、分布式数据库技术、多模型数据的统一处理技术、基于容器的数据云技术、大数据开发技术、AI与机器学习运营管理技术、知识工程和知识图谱技术七个方面,积累了31项核心技术。公司在报告期内针对前述领域的技术持续进行更新迭代。
  2、报告期内获得的研发成果
  公司始终坚持自主研发,稳步推进各项研发项目,并对技术创新成果积极申请专利保护。截至2025年6月30日,公司累计获得发明专利169个,实用新型专利1个,外观设计专利2个,软件著作权464个。
  3、研发投入情况表
  4、在研项目情况
  5、研发人员情况
  6、其他说明

  四、报告期内主要经营情况
  公司实现营业收入152,505,821.85元,同比增加8.82%;实现归属于上市公司股东的扣除非经常性损益的净利润-156,248,661.08元,亏损同比收窄24.03%。

  五、风险因素
  (一)尚未盈利的风险
  公司尚未实现盈利,主要系公司专注于人工智能和大数据基础设施领域基础软件的研发,坚持“自主研发、领先一代”的技术发展策略,目前公司正处于快速成长期,在研发、销售及管理等方面持续投入较大,公司目前的营业收入规模相对较小,尚未形成突出的规模效应,不能完全覆盖各项期间费用及成本的投入所致。
  人工智能和大数据基础设施领域具有技术壁垒高、研发周期长、研发投入大等特点,公司相应进行了大量的研发投入,在技术研发及技术产业化方面投入了大量的资源和成本。同时,由于公司产品具备较强的专业性,公司产品和服务面临的系统环境和客户需求复杂,并且面向的应用场景和领域众多,包括金融、政府、能源、电信、交通等,相关垂直行业的市场开拓、客户挖掘及行业深耕均需要公司建立和培养专业的销售人员,相关产品部署、方案设计及技术服务的实施需要综合能力较强的售前人员支持,使得整体销售费用投入较多。此外,为建立相匹配的支撑服务体系,公司在运营管理、人力资源及财务内控等中后台建设和办公场所租赁等方面亦进行了较大的投入。公司尚未盈利且存在累计未弥补亏损,对公司资金状况、研发投入、业务拓展、人才引进、团队稳定等方面造成影响,未来能否扭亏仍有不确定性,无法保证短期内实现盈利或进行利润分配。
  (二)业绩大幅下滑或亏损的风险
  1、业绩亏损的原因
  报告期内,公司归属于上市公司股东的净利润为-14,294.51万元,归属于上市公司股东的扣除非经常性损益的净利润为-15,624.87万元,公司呈现亏损的状态。截至2025年6月30日,公司累计未弥补亏损为146,645.77万元。
  2、持续经营能力
  报告期内,公司实现营业收入15,250.58万元,较上年同期增长8.82%。公司秉承“自主研发、领先一代”的技术发展策略,持续迭代软件产品,在金融、政府、能源、交通、制造等众多国民经济支柱领域,公司客户数量持续增长,并实现众多标志性项目落地。公司未来能否保持持续增长,受到宏观经济、行业政策、市场需求、技术更新迭代、公司自身发展战略、人才储备、市场开拓能力等内外部因素影响。如果未来公司现有主要产品市场需求出现下滑、行业竞争加剧、不能顺利开展研发活动并形成满足市场需求的产品或服务,公司的营收、净利润将面临下降的风险。
  3、主营业务、核心竞争力及所处行业景气情况
  近年来随着互联网、移动互联网、物联网、5G等信息通信技术及产业的不断发展,全球数据量呈现爆发式增长态势,我国是数据资源大国,IDC研究报告指出,中国大数据市场增速持续领跑全球,呈现出强劲的增长态势,预测从2021年至2026年,大数据软件将以26.9%的五年年均复合增长率强势增长。各行业推动数字化转型,对于海量数据的存储、处理、分析需求更加旺盛,数据作为和土地、资本、劳动力、技术一样的生产要素,在数字经济不断深入发展的过程中,地位愈发凸显。在我国“十四五”规划和2035年远景目标纲要提出,培育壮大人工智能、大数据等新兴数字产业,充分发挥海量数据和丰富应用场景优势,促进数字技术与实体经济深度融合,赋能传统行业转型升级,打造数字经济新优势。报告期内,在国家加速数据要素市场建设和重视数据安全和隐私保护的大背景下,数据安全防护技术、隐私计算技术的应用普及和商业化在加速进行。此外,AIGC技术爆发出新的技术和产业革命,加大人工智能技术投入已成为行业和政府的共识。报告期内,公司主营业务、核心竞争力均未发生重大不利变化,与大数据行业整体趋势一致。
  (三)核心竞争力风险
  1、技术升级迭代风险
  作为大数据基础软件供应商,公司的生存和发展很大程度上取决于是否能够及时、高效地进行技术更新与产品升级,以满足客户不断升级的需求。随着人工智能、5G、云计算等新兴技术的深入发展,大数据基础软件相关技术升级迭代加快,公司必须尽可能准确地把握新技术发展动向和趋势,将前沿技术与公司现有技术平台、核心产品有效结合。若公司未能及时把握技术发展趋势,不排除国内外竞争对手或潜在竞争对手率先在新技术领域取得重大突破,而推出更先进、更具竞争力的技术和产品,或出现其他替代产品和技术,可能导致公司无法保持当前的技术先进性,从而对公司未来的经营产生不利影响。
  2、知识产权及高端技术人才流失的风险
  大数据及相关基础软件属于技术密集型行业。在业务开展过程中,公司的商标、商业秘密、专利、版权等可能存在被盗用或不当使用的情况,不排除公司与竞争对手产生其他知识产权纠纷的可能。另外,仍不排除个别竞争对手采取恶意诉讼的市场策略,利用相关诉讼拖延公司业务开展。上述知识产权相关的风险一旦出现,将对公司的业务、财务状况和经营业绩产生不利影响。
  大数据及相关基础软件行业人才资源竞争日益成为行业的主要竞争因素。若公司不能持续维护现有核心技术人员以及研发团队的稳定,并不断吸引业内优秀人才加盟,可能导致高端技术人才流失,从而对公司的发展造成不利影响。
  (四)经营风险
  1、市场竞争风险
  相比国内大型云厂商和ICT厂商,公司在资金实力、品牌知名度等方面仍有一定差距,公司面临较为激烈的行业竞争。同时,随着用户对数据存储和分析服务的需求不断增长,各竞争对手加强争夺市场份额,可能导致公司所处行业竞争加剧。如果公司在市场竞争中不能有效保持技术先进水平,不能充分利用现有的市场影响力和差异化竞争策略,无法在当前市场高速发展的态势下迅速扩大自身规模并增强资金实力,公司将面临较大的市场竞争风险,有可能导致公司的市场地位出现下滑。
  2、开源软件或免费软件的竞争风险
  虽然开源软件和免费软件在实际应用场景中,存在较多安全性不足、性能较差等劣势,且目前数据库开源体系由国外主导,可能受他国的出口政策限制,但因其具有较低的应用成本,仍然在当前软件行业中有较为广泛的应用基础,对商用软件的推广构成一定的竞争。商用软件通常针对客户需求进行开发,有较高的技术门槛,在对安全、性能等方面有刚性需求的场景中,商用软件仍然占据主流。目前传统关系型数据库仍以商用产品为主,NoSQL数据库作为新兴数据库产品,在应用中,免费及开源产品使用较为广泛。为保障用户使用的安全性及性能体验,公司产品均为商用产品。若未来免费或开源产品的技术快速迭代,应用范围更广,可能加剧市场竞争,导致公司出现商用产品销售量和价格下降的风险。
  3、渠道销售的风险
  根据当前软件行业的市场情况,公司采用直销与渠道销售相结合的模式,渠道销售主要为通过生态合作伙伴向终端客户销售产品。生态合作伙伴是公司的重要客户源,报告期内,渠道销售收入占主营业务收入的比例约为51.67%。生态合作伙伴的获取、维护和管理以及合作伙伴自身的经营能力对公司的盈利能力有重要影响,渠道销售收入的增长主要来源于持续开拓合作伙伴,以及与现有合作伙伴维持持续稳定的合作关系。由于公司产品迭代较快,且技术门槛较高,公司需要持续投入人力物力用于获取、维护和管理合作伙伴。目前公司的生态合作伙伴数量较多,地域分布较为分散,也增加了公司与其合作或对其管理的难度。如果公司难以继续投入维持合作伙伴的关系或开拓新客户,可能导致公司渠道销售收入规模难以持续增长。
  4、收入季节性波动的风险
  公司收入存在一定的季节性,第四季度收入高于其他三个季度。公司终端客户主要集中于金融、政府、电信、能源、制造等行业或单位,该等客户通常实行严格的预算管理制度,通常每年上半年启动项目并在四季度验收,由于公司收入主要集中于四季度,而费用又在年度内较为均衡地发生,因此前三季度的盈利状况与全年盈利状况可能存在较大的差异,投资者不宜以季度或者半年度报告的数据推测全年盈利情况。
  5、国产替代产品推行不达预期的风险
  近年来,随着国家政策的大力支持以及国内客户越来越重视数据与信息安全,国产替代成为基础软件发展的重要机遇。但是公司面临下游客户信息系统环境多样、国产大数据生态有待完善、人才短缺等障碍,同时国产厂商在数据管理软件起步相对较晚,产品在客户实操场景打磨及市场推广方面仍需要一定的时间,若国产替代产品推行速度不及预期,可能对公司拓展市场产生不利影响。
  (五)财务风险
  1、销售费用占营业收入比重较高的风险
  报告期内,公司销售费用为7,545.54万元,销售费用占营业收入的比例为49.48%,销售费用占比较高。一方面,公司收入具有明显的季节性特征,上半年度收入较下半年度偏低;另一方面,公司产品和服务面向的行业领域众多,包括金融、政府、能源、制造、交通等,需要持续投入资源建设销售队伍进行相关垂直行业的市场开拓、客户挖掘和生态体系构建。公司在报告期内通过组织架构优化、费用管控升级等措施,已实现销售费用同比下降28.75%,但若公司收入增长不达预期、重点行业市场渗透未达预定目标、新产品开发或商业化进程受阻,较高的销售费用规模可能对公司的盈利产生不利影响。
  2、研发投入占营业收入比重较高,持续投入资金需求较大的风险
  报告期内,公司研发投入(包括研发费用和开发支出)为12,306.71万元,研发投入占营业收入的比例为80.70%,研发投入规模占比较高。由于大数据基础软件产品具有技术壁垒高、研发周期长、研发投入大等特点,需要大量的研发人员、时间和资金投入。随着行业中新技术的涌现,尤其是AIGC引领的新的技术和产业革命,公司正在加速融合大数据、人工智能、云计算等前沿技术构建产品护城河,巩固技术方面的先进性,持续的研发投入可能导致公司盈利周期相对较长的风险。
  3、应收账款余额较大的风险
  截至报告期末,公司应收款项(含应收账款和合同资产)账面价值为34,334.55万元,占流动资产的比例为34.03%。未来,随着公司经营规模的增大,公司的应收款项规模可能将进一步增大。虽然公司应收款项对象多是政府和金融行业的中大型客户或集成商,履约能力强、信誉度高,发生坏账的风险较低,但是如果债务人发生财务状况恶化或者公司催收不力,可能导致应收款项无法收回形成坏账损失,对公司的经营成果、资金状况造成不利影响。
  4、经营活动产生的现金流量净额波动的风险
  报告期内,公司经营活动产生的现金流量净额为-13,277.67万元,经营性净现金流持续为负,主要系公司尚处于成长期,研发及销售投入较大,同时公司销售环节对客户存在一定的信用期,从而导致经营活动流入的现金未能覆盖流出的现金。若未来公司经营活动现金流情况无法改善,可能使得公司资金状况紧张,从而面临一定程度的流动性风险。
  5、研发投入资本化带来的业绩风险
  报告期内,公司将符合条件的开发支出资本化。若开发支出对应的在研项目研发成功,产品达到预定的标准并可以实现产业化,相关研发投入转入无形资产进行摊销,存在降低公司未来利润的风险。若在研项目开发失败,或资本化的开发支出形成的无形资产不能为企业带来经济利益时,将形成资产减值损失,对公司的业绩产生不利影响。为控制研发风险,公司将立足市场,综合考虑技术研发与市场需求,加强研发过程中的内控管理,提高研发效率,降低新产品研发失败的风险。
  (六)行业风险
  大数据及人工智能相关基础软件属于技术密集型行业,技术迭代较快且技术种类较庞杂,需要公司具备较强的研发创新能力及保障持续的技术研发投入以准确把握技术发展趋势、引领新技术的迭代、适应新技术的要求,否则将面临已有客户流失、业务发展迟滞、市场份额下降的风险。此外,大数据及人工智能市场的蓬勃发展也带来了较多参与者,包括但不限于公有云厂商、ICT厂商、专业软件公司以及大模型厂商,在关系型/非关系型数据库、交易型/分析型数据库、机器学习/大模型运营平台等多个维度领域展开激烈竞争,也存在部分大数据应用厂商或者数据中台厂商进军基础软件领域,短期内公司可能面临市场竞争进一步加剧的风险。
  (七)宏观环境风险
  公司的产品被广泛应用于金融、政府、能源、电信等众多行业,与国民经济的发展具有较高的关联度,同时公司所处的软件行业近年来得到了国家政策的大力支持。未来,若中国经济状况发生重大不利变化,如经济增长停滞,使得下游行业的数字化需求增速放缓,且国家对于软件行业相关的政策导向发生了转变,可能会对公司经营带来不利影响。 收起▲